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Posterior Inference and Soft Value Guidance in
Sequential Models
Fine-tuning, controlled generation, and sampling in sequential models has attracted a �urry of recent attention in a variety of settings,
particularly with the growing availability of powerful open-source pretrained models. For language modeling in discrete spaces, we would
often like to align responses with human preferences or generate correct responses to complex reasoning questions. For diffusion models,
we may be interested in steering generation to produce samples belonging a certain class, images which score highly on metrics such as
realism, preference alignment, or text-to-image consistency, and proteins or molecules with desired properties such as synthesizability.
Diffusion-based methods have also been applied for sampling from arbitrary target probability densities such as Boltzmann distributions,
where we can only assume access to a unnormalized density or energy function.

In this blog post, we provide overview of these sampling or controlled generation tasks from a probabilistic perspective, which incorporates
notions from soft reinforcement learning, stochastic optimal control, and Sequential Monte Carlo. A key role will be played by the soft value
function, which yields both importance sampling weights and gradient guidance for diffusion processes. This perspective gives a single
conceptual framework for guidance in discrete and continuous spaces, and highlights how methodologies can be shared across problem
settings.
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Setting & Notation

Assume we are given a pretrained model , which we will seek to condition or modulate to achieve some target properties or distribution at the endpoint. We
begin by de�ning shared notation which will encompass both the language and diffusion modeling settings, although the reader should feel free to skip ahead to
concrete examples in Target Distributions and parse the notation within this context.

For autoregressive language models, we adapt our notation to provide a Markovian structure used throughout later exposition. We consider the state
 in an expanding state-space of tokens  from a discrete vocabulary, which are generated in response to a

prompt or initial state  of maximum length . We view a reference policy  as selecting a next token  as the action  with the
context  as the state , with deterministic environment transitions  that concatenate the generated
token  with the context . The policy is usually given by an autoregressive model  . For convenience, we will write the full state
transition as  . This leads to a slight abuse of notation in which we can write the probability of a

(partial) sequence  either using tokens  or as a joint distribution over its pre�xes  .

For diffusion processes, let  represent the current (noisy) state, where  corresponds to clean data. We consider a reference stochastic differential
equation with time-dependent drift  , which may correspond to a physical force or pretrained score-based diffusion model

We can approximately model this continuous-time stochastic processes using discrete-time Gaussian kernels for small  . We consider the reference drift as an
action  , with stochastic environment transitions drawn from  via Euler
discretization. For convenience, we combine action selection and state transition into the policy  .
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Target Distributions

We will proceed to view many controlled generation or �ne-tuning tasks as sampling from a target probability distribution at the �nal step  , where the target is
only known up to a normalization constant. .

To ease notation and facilitate posterior sampling interpretations, we de�ne an observation random variable , which is emitted as a function of the �nal state
according to , and attempt to sample from the posterior distribution over all states,

In particular, we would like our full language model responses or �nal diffusion states to be distributed according to the endpoint posterior marginal .
We will consider a �exible class of possible target posteriors de�ned in the following table.

Setting

Constraint

Classi�er or Observation

Reward or Energy Modulation

Arbitrary Unnormalized Density

A crucial challenge arises from the fact that conditioning information is only provided at the terminal state  , whereas generation or sampling needs to be
performed sequentially and forward in time according to

Before describing how soft value functions and stochastic optimal control can be used to address this challenge, we discuss several concrete examples below.

Examples

CONSTRAINTS

For the language modeling setting, constraints may �lter responses which correspond to correct answers to reasoning questions , syntactically-valid outputs,
or responses for which a scalar function meets an acceptability or rare-event threshold .

For diffusion modeling, constraining the endpoint sample to fall within a certain set  corresponds to the traditional formulation of Doob’s -transform,
which has been used for generative modeling on constrained domains  or with aligned data  arising in biomolecular or chemical problems. In the case
where  is a diffusion with linear drift, the conditioned process ending at a particular point  is available as a closed form linear interpolation. This
observation underlies e�cient optimization techniques for `bridge matching’ methods  which extend recti�ed �ow matching  to stochastic processes
and Schrödinger Bridge problems for generative modeling or image translation.

CLASSIFICATION OR OBSERVATION RANDOM VARIABLES

Given a classi�er , we can hope to condition our language or diffusion model to generate samples likely to be of a certain class, such as uncovering
language model responses which are �agged by content moderation classi�ers. In the Stochastic Optimal Control section below, we will see that class-
conditioned diffusion processes characterize the optimal form of well-known classi�er(-free) guidance techniques . Finally, conditioning on a noisy
observation  �nds extensive applications for solving inverse problems in imaging .

REWARD OR ENERGY MODULATION

Reinforcement learning from human feedback has become a dominant paradigm for aligning pretrained language models with human preferences or task-
speci�c applications , �netuning diffusion models to align with text prompts or user feedback , or generating proteins, molecules, or genetic sequences
with particular properties such as stability, synthesizability, or downstream effectiveness . For our purposes, we will assume a reward model is given.

GENERAL UNNORMALIZED TARGET DENSITIES

Most generally, we can seek to sample from a given unnormalized target density  over the �nal state, which includes reward modulation as a special case
. To facilitate a posterior interpretation in these cases, we would like to introduce a random variable  which re�ects

`optimality’, or the fact that endpoint samples are distributed according to the endpoint target. To do so, we construct a hypothetical rejection sampling of the

endpoint samples, where we accept samples with probability , for . The constant , which ensures

 and that accepted samples have the desired distribution, need not be estimated in practice, since it can be shown to vanish in the eventual
posterior .

Again, we emphasize that this construction is hypothetical, but is useful to add detail to presentation in the in�uential 2018 tutorial by Sergey Levine  and
facilitate our uni�ed viewpoint in terms of posterior inference.

Initial Sampling

An immediate question arises as to how to initialize sampling in , since  is already likely to be intractable in general.
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In language modeling settings, we are often given access to prompts  via data or user interaction, so it is natural to focus on the posterior over responses to
particular prompts,

However, in diffusion models, we remain interested in , and risk introducing bias if our initial sampling distribution differs from . It may be
possible to sample from  in cases when the noising dynamics converge quickly to a stationary distribution, such as a standard Normal,
independent of the initial distribution . Alternatively, �netuning could be performed using a `memoryless’ noise schedule which renders

 and thus  . We proceed to assume  and focus on subsequent sampling steps for
 to encompass both language and diffusion settings.

Soft Value Function

We begin by characterizing the target posterior  via the solution to a variational optimization , which we will refer to as an Evidence Lower
Bound (ELBO),

where  achieves the maximum and the soft value is the log normalization constant , which we expand
upon below.

The optimal soft value function thus translates terminal target information to intermediate steps in order to facilitate sampling the exact posterior marginals along
the entire trajectory. In particular, consider the optimization  starting from a given partial sequence or intermediate state ,

The soft value function measures the expected target likelihood under rollouts from the reference policy, which may involve generating tokens  or running
diffusion sampling until time . In our setting with no intermediate reward or target information, we can recognize the expression for  in  as a
conditional likelihood in  

ONE-STEP OPTIMAL POLICY

Similarly, we can write the optimal one-step sampling distributions in terms of soft values,

where  again serves as the log normalization constant.

INTERMEDIATE MARGINAL DISTRIBUTIONS

Finally, composing the optimal one-step policies, we can write the evolution of the intermediate target marginals in terms of the value function

which can equivalently be expressed

The central message is that the optimal soft value function provides a “backward message” summarizing future conditioning information relevant to sampling at
time .

Stochastic Optimal Control

Remarkably, the gradient of the soft value function can also be shown to provide the optimal drift for a controlled diffusion process guiding samples to the
endpoint target distribution.
To build up to this connection, we note that in the continuous-time limit, the KL divergence in  is �nite only for path measures or SDEs of the form

where  satis�es mild regularity condtiions. In this case, the KL divergence can be written as the time-integral of the norm of  using the Girsanov theorem, and
we can recognize the negative of the ELBO in  as a stochastic optimal control problem

subject to  having the form of . Using variational calculus, one can show that the solution takes the form
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Using the probabilistic view of the value functions in - , observe that the exponentiated value functions are related via expectations under the reference
process

This is known as a martingale condition in the stochastic process literature, where  is often known as Doob’s -function. The martingale
condition ensures that conditional and marginals constructed from -  are consistent with respect to marginalization, and results in the following
remarkable theorem .

Theorem 1 For any function satisfying , the stochastic process

realizes the transition dynamics

This theorem is true for any function satisfying the martingale condition, including the optimal value function corresponding to a particular target , and
demonstrates the link between value functions, guidance drifts for controlled diffusion processes, and posterior or conditioned transition probabilities.

Twisted Sequential Monte Carlo Sampling

In both the language and diffusion cases, we can leverage Sequential Monte Carlo to resample a set of  partial sequences or intermediate states based on the
(optimal) soft values, which has the effect of prioritizing sequences or states which we expect to achieve likelihood under the �nal-step target distribution.

To introduce this importance sampling technique, we consider the unnormalized  (see ), which omits the
intractable normalization constant  and thus is easy to evaluate. For a given proposal or approximate posterior  (which may be learned as in
Objectives below, or simply set to  ), consider the importance weights in the extended space,

The latter equality suggests that the weights are an unbiased estimator of the intractable normalization constant , assuming  for all .

We would like to transform these weights into step-by-step incremental weights which will allow us to perform importance-weighting of intermediate states

according to the optimal target posterior. While a naive forward factorization  would only include target information at

the �nal step, we should instead consider the posterior transitions in . Rewriting  using , we have

Note that the numerator at the �nal step includes the given target conditional .

The weights in  suggest a sequential resampling scheme at intermediate steps. For a budget of  samples and looping over timesteps , we can
proceed with the following steps:

for :
for :

Sample 

Update weights 

(if resampling condition met, perform multinomial resampling):

Sample  for 

Copy or Reassign Samples:  ( for all  in parallel)

Reset weights: 

Note that resetting the weights means that only subsequent weights are used for resampling at future timesteps, which preserves the unbiasedness of the
eventual weights in . See the blog post by Tuan Anh Le for a particularly simple proof . More advanced resampling techniques such as systematic
resampling might also be used.

Finally, we can use this resampling scheme even for approximate  or  for , although it is clear that the e�cacy of this scheme will depend
on the quality of these intermediate value functions or likelihoods.
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For the language modeling setting, recall that we absorbed the autoregressive model into Markov transitions
 where the states expand with concatenation of next tokens. Rewriting the proposal in similar terms,

we can think of the weights as evolving according to

where the likelihood or values are evaluated on the partial sequences  and . See  or  for additional discussion.

DIFFUSION

Since diffusion process operate on states  in Markovian fashion, the weights in  can be used as is, where  corresponds to the
discretization of a stochastic process as in .

Objective Functions

We �nally discuss several classes of objective functions for learning value functions and/or approximate posterior policies. We only attempt to give a high-level
landscape of various methods, mostly in discrete time, and defer to references for algorithmic and technical details.

Evidence Lower Bound (Mode-Seeking KL)

Similarly to derivations in the case of standard variational inference, one can show that, for a given , the gap in the ELBO in  is the mode-seeking KL
divergence . Thus, minimizing this KL divergence corresponds to maximizing . Notably, since  appears in the
�rst argument, optimizing this objective requires taking gradients through the sampling procedure.

LANGUAGE

When  , we recognize  as a common objective for reinforcement learning from human feedback in language models, where
 is optimized using policy gradient methods such as PPO  or REINFORCE . While PPO maintains a value network to reweight policy gradients,

the focus is on �netuning a policy , and an optimal policy  will implicitly capture the value functions through the next-token logits in . A
similar observation underlies token-wise interpretations of direct preference optimization parameterizations . Nevertheless, learned value functions may also
be used to guide generative sampling, either through Monte Carlo Tree Search  or Sequential Monte Carlo (as above).

DIFFUSION

Methods for solving stochastic control problems have an extensive history dating back to . Directly solving  using backpropagation through trajectories is
known as the adjoint method , for which improved gradient estimators have been recently proposed in . The adjoint method was used for sampling
from general unnormalized target densities in .

Cross Entropy (Mass-Covering KL)

While the ELBO and mode-seeking KL divergence was used to introduce the target distribution as the solution of a variational optimization in , we can perform
optimization using any divergence minimization technique with the desired optimum. One example is to optimize the mass-covering KL divergence as in
maximum likelihood training of energy-based models, where recognizing the form of the optimal target marginals in , we optimize

Although exact samples from  are usually not available, one may use importance sampling approximations to reweight samples according to the
endpoint target information , and reuse these weights for approximate sampling at intermediate . 

LANGUAGE

For full-sequence policy optimization, the distributional policy gradient algorithm  amounts to optimizing the mass-covering KL at the �nal step  only,
where the energy is parameterized directly via a normalized policy . For learning intermediate value functions, contrastive twist learning  optimizes
a marginal KL divergence at each step, treating the value functions  as energies.

DIFFUSION

The contrastive energy prediction objective in  amounts to approximate energy-based training of the value functions  at each step, which can then be used
to guide sampling using  as a guidance or control drift in .

For sampling from a general target density,  learn intermediate value functions for guidance and SMC resampling using a `target score matching’ loss ,
which, as in the mass-covering KL, requires importance sampling corrections to draw approximate samples from the endpoint target distribution .

Path Consistency

Path Consistency objectives  consider enforcing the �rst-order optimality conditions associated with the optimization in -  using a squared error loss.
Since this is a functional equality which should hold everywhere, we can optimize the loss over some off-policy sampling distribution . Taking the
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variation of -  with respect to  yields a KKT condition, which we can enforce using

This may also be viewed as minimizing the square of the log importance weights between full-sequence forward and reverse processes in - .  Note
that we may also construct one- or -step consistency losses for any  using the compositional structure of the optimal values in -  or
decomposition of weights in .

LANGUAGE

Path consistency losses correspond to (partial) `trajectory balance’ losses in the literature on Generative Flow networks (GFlowNets), and have been applied for
inference  and �netuning  in autoregressive language models.

DIFFUSION

Trajectory balance or path consistency losses can also be applied for inference in diffusions models , see also . In the sampling literature, a similar
principle underlies the log-variance divergences studied in , in which we enforce that the log likelihood ratio of path-measures or stochastic processes be
constant or equal to zero. Recent work  has also married these losses with intermediate SMC resampling.

Denoising Mean Approximation for Diffusion Settings

Diffusion models parameterized via denoising mean prediction  provide a particularly convenient, training-free estimator of intermediate value
functions. Instead of fully estimating the expectation in  or , one can make a single-sample approximation by evaluating  at the denoising mean
prediction,

From this approximation, we can construct an approximate guidance drift  (for differentiable likelihoods) along with targets 
for intermediate SMC resampling in  . This approximation has found wide applicability for inverse problems , protein generation , and images 
for continuous diffusion models, along with recent applications for discrete diffusion models . However, given that this estimator can be crude even in simple
cases , recent work  �nds bene�ts to annealing the contribution of these terms for both guidance and SMC.

Conclusion

In this blog post, we have proposed to understand controlled generation, sampling, and guidance in both language and diffusion models through the lens of
probabilistic inference. Through connections with soft reinforcement learning and stochastic optimal control, we obtain a rich design space of objective functions
for learning both approximate posterior distributions and value functions, which can also be used within sequential importance sampling techniques to improve
generation and estimation. We hope that this overview provides useful conceptual tools for newcomers to these rapidly-evolving areas, while also contributing to
the continued cross-pollination of ideas between language and diffusion model literatures, between particular problem settings within the diffusion literature, or
between sampling, RL, and �netuning literatures.
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