
Understanding Thermodynamic Variational
Inference

Rob Brekelmans, Aram Galstyan, Greg Ver Steeg
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

brekelma@usc.edu; galstyan, gregv@isi.edu

Abstract

Intriguing recent work by Masrani et al. [15] utilizes thermodynamic integration,
a physics-inspired technique resembling annealed importance sampling (AIS),
within the context of variational inference. We interpret the Thermodynamic Varia-
tional Objective (TVO) using the conjugate duality of exponential families. This
perspective allows us express the gap in TVO likelihood bounds as a sum of KL
divergences along a geometric mixture curve, which corresponds to the asymptotic
bias in AIS estimation. The Renyi variational inference objective also appears
naturally within our framework. Finally, we draw on the AIS literature to explore
strategies for choosing intermediate distributions in the TVO objective.

1 Introduction

Variational inference has become an instrumental tool in modern machine learning [3, 11, 17, 20],
framing maximum likelihood parameter estimation in the presence of latent variables as a tractable
optimization problem. Frequently, this involves subtracting a divergence measure from the marginal
likelihood p(x) =

∫
p(x, z)dz and maximizing the resulting lower bound. Previous work has

considered the KL divergence [11, 17], χ2-divergence [6], f -divergences [21, 22], and Renyi (α-)
divergences [10, 14, 13, 18] in this setting. The variational objective might be chosen to obtain
tighter bounds on likelihood [5, 15], more accurately estimate posterior variance [6], or control the
mass-covering behavior of the approximating distribution [13, 21].

In this work, we interpret the thermodynamic variational inference framework of Masrani et al. [15]
using the conjugate duality of exponential families. While Masrani et al. [15] show that their objective
gives tighter lower bounds on log-likelihood than the familiar Evidence Lower Bound (ELBO), we
explicitly characterize the gap in the TVO bound as a sum of KL divergences. This perspective also
leads to connections with annealed importance sampling, which we use to explore ‘schedules’ for
choosing partitions in the TVO objective.

2 Thermodynamic Variational Inference

Thermodynamic integration (TI) frames estimating the partition function or marginal likelihood
log p(x) as a one-dimensional integration problem over a parameter β ∈ [0, 1]. This parameter maps
out a path of geometric mixtures between a base distribution, in our case q(z|x), and an (unnormalized)
target distribution p(x, z) [7]. We introduce the Thermodynamic Variational Objective (TVO) directly
in terms of our proposed framework, which yields several important quantities in Masrani et al. [15]
from familiar properties of exponential families.
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Figure 1: Mean Parameters:∇β logZβ = Eπβφ(x, z)
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(a) Lower Bound using left-Riemann Sum.
ELBO = log p(x)−DKL[q(z|x)||p(z|x)]
corresponds to estimator with a single β = 0.
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(b) Upper Bound using right-Riemann sum.
EUBO = log p(x) +DKL[p(z|x)||q(z|x)]
corresponds to estimator with a single β = 1.

2.1 Exponential Family Interpretation

To mirror the TVO setting, we can consider an exponential family of distributions πβ(z|x) with
natural parameters β, sufficient statistics φ(x, z) = log p(x, z)/q(z|x),and a log-partition function
ψ(β) = logZβ(x) that integrates over z. We also include a base measure of q(z|x). 1

πβ(z|x) = q(z|x) exp{β φ(x, z)− ψ(β)} where: φ(x, z) , log
p(x, z)

q(z|x)
(1)

ψ(β) , logZβ = log

∫
p(x, z)β

q(z|x)β
dq(z|x) = log

∫
q(z|x)1−βp(x, z)βdz (2)

The insight of TI is that we can express log p(x) as an integral of the gradient ∇β logZβ over
0 ≤ β ≤ 1. This corresponds to simply evaluating logZβ at the endpoints π0 = q(z|x), with
logZ0 = 0, and π1 = p(z|x) ∝ p(x, z), with logZ1 = log p(x):

1∫
0

∇β logZβ dβ = logZ1 − logZ0 = log p(x) (3)

It is well known that the log-partition function is convex, with the first (partial) derivative∇β logZβ
equal to the expectation of the sufficient statistics. In our setting, this corresponds to the expected
log-importance weights under πβ , which we refer to as the mean parameter ηβ [1, 20]. To obtain a
numerical estimate for the integral, Masrani et al. [15] give an efficient self-normalized importance
sampling scheme for evaluating expectations at any β:

∇β logZβ = Eπβ log
p(x, z)

q(z|x)
, ηβ (4)

= Eq(z|x)
q(z|x)1−βp(x, z)β

q(z|x)Zβ
log

p(x, z)

q(z|x)

≈
S∑
i=1

wi∑
i wi

log
p(x, zi)

q(zi|x)
where wi =

p(x, zi)
β

q(zi|x)β
(5)

Notably, these weights allow the reuse of importance samples for different β by simply rescaling.
Further,∇β logZβ is increasing as a function of β, since we know that ψ(β) is convex. Thus, the left
and right Riemann sums will form lower and upper bounds on the integral, respectively (see Fig. 1).

LTV OL :=

K∑
k=1

∆βkEπβk−1
log

p(x, z)

q(z|x)
LTV OU :=

K∑
k=1

∆βkEπβk log
p(x, z)

q(z|x)
(6)

1Note, the parameter β should more formally be seen as defining a mixture of the natural parameters between
π0 and π1. We somewhat abuse notation to match the setting of [15]. See App. B for more detailed discussion.
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Figure 3: Partition Function ψ(β) = logZβ
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We can note that the familiar Evidence Lower Bound (ELBO) corresponds to ∇βψ(β)|β=0 =
log p(x)−DKL[q(z|x)||p(z|x)], or the left Riemann lower bound evaluated using a single β = 0.
Similarly, Masrani et al. [15] denote the right endpoint as the Evidence Upper Bound (EUBO), with
∇βψ(β)|β=1 = log p(x) +DKL[p(z|x)||q(z|x)].

While Masrani et al. [15] derive a reparameterization-free estimate for the gradient of each expectation
with respect to the model parameters, the existence of the ELBO as a special case suggests that the
reparameterization trick might also used to optimize the TVO (see App. D, [13]). Finally, we note that
each intermediate partition function logZβ corresponds to a scaled version of the Renyi VI objective
Lα [13], with logZβ = β L1−β (see App. C).

2.2 TVO Using Bregman Divergences

While the TVO is presented as a numerical integration in mean parameter space (Fig. 1), we now give
an alternative interpretation in terms of Bregman divergences derived from the log partition function
ψ(β). We write the Bregman divergence Dψ between distributions indexed by natural parameters β
and β′ as:

Dψ[β : β′] = ψ(β)− ψ(β′)− 〈β − β′,∇βψ(β′)〉
Geometrically, the divergence can be viewed as the difference between ψ(β) and its linear approxi-
mation around β′ in Fig. 3. While higher order Taylor series might be considered (see App. B.2), the
convexity of the partition function ensures that the first order approximation will underestimate ψ(β),
yielding a nonnegative divergence.

As shown in App. A, we can leverage convex duality to obtain an alternative divergence in terms of
the conjugate function ψ∗(η) and the mean parameters η. These divergences are equivalent with the
order of arguments reversed. Further, for exponential family models, ψ and ψ∗ both induce the KL
divergence as their Bregman divergence:

Dψ[β : β′] = DKL[πβ′ ||πβ ] Dψ∗ [η : η′] = Dψ[β′ : β] = DKL[πβ ||πβ′ ] (7)
These divergences give a complementary perspective on the TVO objective using the graph of the log
partition function ψ(β) = logZβ in Fig. 3. Considering a discrete partition γ(β) = {β0, ...βK} with
β0 = 0, βK = 1, we can write the gap in the left-Riemann TVO lower bound using the Bregman
divergence Dψ[βk : βk−1].

K∑
k=1

Dψ[βk : βk−1] = logZ1 − logZ0 −
K∑
k=1

(βk − βk−1)∇βψ(βk−1)

= log p(x)−
K∑
k=1

∆βkEπβk−1
log

p(x, z)

q(z|x)
(8)
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where intermediate log partition terms cancel due to the telescoping sum, and the second term
corresponds with LTV OL in (6). While Masrani et al. [15] show only that LTV OL minimizes a
quantity that is non-negative and vanishes at q(z|x) = p(z|x), we can explicitly characterize the gap
in the lower bound as a sum of Bregman divergences using (8), or KL divergences via (7).

log p(x)− LTV OL =

K∑
k=1

Dψ[βk : βk−1] =

K∑
k=1

DKL[πβk−1
||πβk ] (9)

The dual divergence, using the KL divergence in the reverse direction, similarly characterizes the gap
in the right-Riemann upper bound (see App. A.1):

LTV OU − log p(x) =

K∑
k=1

Dψ[βk−1 : βk] =

K∑
k=1

DKL[πβk ||πβk−1
] (10)

3 Annealing Paths

We can immediately recognize the sum of KL divergences for the lower bound gap (9) as the bias
in an annealed importance sampling estimator of log p(x) under perfect transitions [9, 16]. This
connection with the gap in the TVO lower bound is novel and allows application of several results
from Grosse et al. [9].

In the limit of infinitesimal transitions along a geometric path with linear spacing, the scaled bias
K
∑
DKL[πβk−1

||πβk ] can be shown to approach the symmetric KL divergence between the end-
points (Thm 1 [9], with detailed derivations in App. B).

K

K∑
k=1

DKL[πβk−1
||πβk ]→ F(γ) =

1

2

(
DKL[π0||π1] +DKL[π1||π0]

)
(11)

=
1

2
(β1 − β0)(η1 − η0) (12)

As in Theorem 3 of Grosse et al. [9], we can use this insight to derive an optimal linear binning
schedule that minimizes the bias F . We also consider the moment-averaging path [9] for determining
the values of β at which to optimize the TVO objective.

Recursive Schedule: Imagine a coarse partition of the interval [0, 1] using knots tj , 0 ≤ j ≤ J .
We then seek to allocate a budget of K intermediate distributions across the segments with Kj

uniformly-spaced points within the subinterval Tj = [tj , tj+1]. We can then use (12) to allocate Kj

according to the contribution to the bias within each segment, Fj = 1
2 (βtj+1

− βtj )(ηtj+1
− ηtj ).

Minimizing
∑
j Fj/Kj subject to

∑
j Kj = 1, we obtain:

Kj ∝
√

(βtj+1
− βtj )(ηtj+1

− ηtj ) (13)

where βtj and ηtj indicate the natural parameters and (estimated) moment parameters at a point
tj along the path. With given knot points, Equation (13) can thus be used to adaptively choose
intermediate distributions across training.

To avoid specifying the knot points, we can also recursively allocate intermediate distributions based
on evaluations of (13). After each epoch, we allocate K total points across T0 = (0, 0.5], T1 =
(0.5, 1.0], with the resulting ‘left’ budget K0 split among (0, 0.25], (0.25, 0.5], and so on.

Moments Schedule: Since intermediate distributions can be described by either βk or ηk, we may
also use the mean parameters to construct a partition of the interval 0 ≤ β ≤ 1. For a budget of K
intermediate distributions, we find values of βk which give equal spacing in the mean parameter
space, so that ηβk = k/K · η0 + (1 − k/K) · η1 = k/K · ELBO + (1 − k/K) · EUBO. The
Legendre transform, which finds βk corresponding to a given ηβk is difficult in general, but is easily
approximated here using a binary-search procedure and cheap evaluations of ηβ according to (5).

Note that this schedule does not imply linear spacing in natural parameter space, so that mixing
weights (βk − βk−1) will be non-uniform for the TVO objectives in (6).
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Figure 5: Likelihood Estimates Figure 6: Intermediate Distributions:
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4 Results

We compare our recursive allocation scheme and moment-averaged path from Sec. 3 against uniform
linear spacing and log-uniform spacing, with the first β fixed to 0.05, in Figure 5. Using the same
architecture as in [15], we train on Binary MNIST for 1000 epochs using Adam with learning rate
0.001, and estimate log p(x) on the test set using the IWAE bound [5] with 5000 samples.

We find our adaptive schemes lead to slight improvements over uniform and log-uniform methods,
with the recursive linear schedule appearing to perform best. Error bars show the TVO upper and
lower bounds as estimated on the test set, and we confirm that the bounds tighten as the number of
partitions grows and the difference between the left- and right-Riemann evaluations decreases.

In Figure 6, we show the β values chosen by our adaptive methods at the end of training. We observed
the intermediate distribution to be fairly stable after the initial training epochs. Note that equal spacing
in the moment-averaged path leads to a high concentration at low β. This reflects the observation in
Masrani et al. [15] that the expected sufficient statistics change quickly at low β before flattening out,
requiring careful attention in approximating the integral in this region.

Finally, as discussed in Masrani et al. [15], we find that increasing the number of intermediate β need
not improve performance. Although more partitions should lead to a tighter likelihood bound, we
expect the bias in our self-normalized importance sampling scheme will increase as we move away
from β = 0. Importance sampling schemes which reduce this bias [8] might eventually allow the
TVO objective to enjoy the full benefit of finer partitions and principled schedules.

5 Conclusions

We have presented an interpretation of the Thermodynamic Variational Objective [15] in terms of a
one-dimensional exponential family, allowing us to characterize the gap in the TVO bounds and make
explicit connections with annealed sampling methods [7, 16, 9] and the information geometry of
exponential families [1, 2]. This perspective should open new avenues for analysis of thermodynamic
variational inference.
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A Conjugate Duality

A Bregman divergence associated with a convex function f : Ω→ R can be written as [2, 1]:

DBf [p : q] = f(p) + f(q)− 〈p− q,∇f(q)〉
The family of Bregman divergences includes many familiar quantities, including the KL divergence
corresponding to the negative entropy f(p) = −

∫
p log p dω. Geometrically, the divergence can be

viewed as the difference between f(p) and its linear approximation around q. Since f is convex,
we know that a first order estimator will lie below the function, yielding Df [p : q] ≥ 0. For our
purposes, we can let f , ψ(β) = logZβ over the domain of probability distributions indexed by
natural parameters of the exponential family in (1):

Dψ[βp : βq] = ψ(βp)− ψ(βq)− 〈βp − βq,∇βψ(βq)〉
This is a common setting in the field of information geometry [1], which introduces dually flat
manifold structures based on the natural parameters and the mean parameters. In particular, we can
leverage convex duality to derive an alternative divergence based on the conjugate function ψ∗:

ψ∗(η) = sup
β

η · β − ψ(β) =⇒ η = ∇β ψ(β)

= η · βη − ψ(βη) (14)

The conjugate measures the maximum distance between the line η · β and the function ψ(β), which
occurs at the unique point βη where η = ∇βψ(β). This yields a one-to-one correspondence between
η and β for minimal exponential families [20]. Thus, a distribution p may be indexed by either its
mean parameters ηp or natural parameters βp.

Noting that ψ∗∗ = ψ(β) = supη η · β − ψ∗(η) [4], we can use a similar argument as above to write
this correspondence as β = ∇ηψ∗(η). We can then write the dual divergence Dψ∗ as:

Dψ∗ [ηp : ηq] = ψ∗(ηp)− ψ∗(ηq)− 〈ηp − ηq,∇η ψ∗(ηq)〉
= ψ∗(ηp)− ψ∗(ηq)− ηp · βq + ηq · βq
= ψ∗(ηp) + ψ(βq)− ηp · βq (15)

Similarly,

Dψ[βp : βq] = ψ(βp)− ψ(βq)− 〈βp − βq,∇βψ(βq)〉 (16)
= ψ(βp)− ψ(βq)− βp · ηq + βq · ηq
= ψ(βp) + ψ∗(ηq)− βp · ηq (17)

Comparing (15) and (17), we see that the divergences are equivalent with the arguments reversed, so:

Dψ[βp : βq] = Dψ∗ [ηq : ηp] (18)

For an exponential family with partition function ψ(β) and sufficient statistics φ, we can make further
statements about ψ∗(η) and the induced divergence measures.

In particular, note that, for a distribution p indexed by βp and ηp, we can write log p(x) = βp ·φ(x)−
ψ(β). Then, (14) becomes:

ψ∗(ηp) = ηp · βp − ψ(βp)

= Ep[φ(x) · βp]− ψ(βp)

= Ep log p(x)

= −Hp(X)

since ψ(βp) is constant with respect to x. The dual divergence with q then becomes:

Dψ∗ [ηp : ηq] = ψ∗(ηp)− ψ∗(ηq)− 〈ηp − ηq,∇η ψ∗(ηq)〉
= Ep log p(x)− ψ∗(ηq)− ηp · βq + ηq · βq
= Ep log p(x)− ηp · βq + ψ(βq)

= Ep log p(x)− Ep[φ(x) · βq] + ψ(βq)

= Ep log p(x)− Ep log q(x)

= DKL[p(x)||q(x)]
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Thus, the conjugate function is the negative entropy and induces the KL divergence as its Bregman
divergence. Using (18), we see that the ψ(β) will yield the reverse KL by a similar set of arguments.
These results are well known from [1, 20], for example, but help to unify a geometric analysis of the
gap in the TVO with characterizations of the bias in annealed importance sampling estimates [9] (see
Sec. 2.1. More generally, this correspondence with the information geometry of exponential families
provides justification for use of the KL divergence in these models, which is often assumed a priori
(see Ch. 3 and 6 of [1]).

A.1 TVO Upper Bound Gap

Similarly to (8), we can use the KL divergence in the other direction DKL[πβk ||πβk−1
] to obtain an

upper bound on log p(x):
K∑
k=1

Dψ[βk−1 : βk] = logZ0 − logZ1 −
K∑
k=1

(βk−1 − βk)∇βψ(βk)

=

K∑
k=1

∆βkEπβk log
p(x, z)

q(z|x)
− log p(x) (19)

This expression could be equivalently written using the dual divergence Dψ∗ [ηk : ηk−1], and
corresponds to the amount by which the right-Riemann sum LTV OU over-estimates log p(x).

LTV OU − log p(x) =

K∑
k=1

Dψ[βk−1 : βk] =

K∑
k=1

DKL[πβk ||πβk−1
] (20)

B Annealing Paths and Fisher Information

B.1 Exponential and Mixture Geodesics

In Sec. 2.1, we mention our slight abuse of notation in using β to denote the natural parameters
of the exponential family. More precisely, we should consider natural parameters θ, with θ = 0
corresponding to π0 = q(z|x) and θ = 1 with π1 = p(z|x). Then, β ∈ [0, 1] can be used to define
the exponential mixture path between endpoints θa and θb, so that θ(β) = (1− β) · θa + β · θb. This
corresponds to an additive mixture of the natural parameters or a geometric mixture of the probability
densities, and is known as the e-geodesic in information geometry [1]. For the TVO setting, we have
endpoints θa = 0 and θb = 1, so that θ(β) = β. We have used this directly for notational ease, but
our results for θ(β) = β naturally translate to geodesic paths θ(β) between arbitrary endpoints θa, θb.

Grosse et al. [9] also consider AIS paths using additive mixtures of the mean parameters η, which they
denote the moment-averaged path γMA(η). This also known as the m-geodesic, a dual connection
between base and target distribution.

B.2 Annealing Path Bias

The bias in an AIS estimation of log p(x) along a geometric mixture path γGA(β) can easily be seen
to be

∑
DKL[πβk−1

: πβk ] by expanding the expected log importance weights [9, 16].

In the limit of infinitesimal transitions with linear spacing, the bias can be shown to approach the
symmetric KL divergence between the endpoints θ0 = 0 and θK = 1 ([9], Thm 1). Letting β denote
the mixing path between base and target distributions, so that θ(β) = (1−β) · θ0 + t · θK , and Gθ(β)
be the Fisher information matrix evaluated at θ(β),

K

K∑
k=1

DKL[πβk−1
||πβk ]→ F(γ) =

1

2

1∫
0

θ̇(β)TGθ(β)θ̇(β)dβ (21)

=
1

2

(
DKL[π0||π1] +DKL[π1||π0]

)
(22)

Here, θ̇(β) indicates the derivative of the natural parameters w.r.t. β, which is a constant w.r.t.
β: θ̇(β) = θK − θ0 and equals 1 in the case of TVO. The proof proceeds by taking the Taylor
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approximation of the KL divergence DKL[βk||βk + ∆β ] around βk for small ∆β , where (21)
corresponds the second order term [9, 12].

The expression in (21) then corresponds to the integral of the Fisher information along either the
e- or m- geodesic paths (Theorem 3.2 of Amari [1]), and is equal to the symmetric KL divergence.
Equivalently, Theorem 2 of Grosse et al. [9] shows that both the geometric- and moment-averaged
paths yield the same asymptotic bias, matching (22):

F(γGA) = F(γMA) =
1

2
(η1 − η0)T (β1 − β0) (23)

=
1

2

(
Eπβ1 [φ1 · β1]− Eπβ1 [φ1 · β0] +−Eπβ0 [φ0 · β1] + Eπβ0 [φ0 · β0]

)
=

1

2

(
Eπβ1 log

πβ1

πβ0

+ ψ(1)− ψ(0) + Eπβ0 log
πβ0

πβ1

− ψ(1) + ψ(0)
)

(24)

=
1

2

(
DKL[π0||π1] +DKL[π1||π0]

)
(25)

where we have added and subtracted the partition functions in the second to last line to normalize the
log probabilities.

C Connections with Renyi Divergence Variational Inference

C.1 Renyi Divergences as Partition Functions

We proceed to show that the partition function ψ(β) = logZβ of this exponential family is related to
a scaled Renyi divergence for intermediate β. Using the definition of [19], the Renyi divergence of
order α is defined as:

Dα[p||q] =
1

α− 1
log

∫
pαq1−αdω

for distributions p and q over some measure dω. We can immediately notice the similarity of this
expression with (2), implying that:

logZβ = (β − 1)Dβ [p(x, z)||q(z|x)] (26)

Van Erven and Harremos [19] indeed show that this is a convex function of β on [0,∞], matching
what we know about the log partition function. We can obtain further interesting forms for logZβ by
removing log p(x) from the expression in (26):

logZβ = log

∫
q(z|x)1−βp(x, z)βdz

= β log p(x)− (1− β)Dβ [p(z|x)||q(z|x)] (27)
= β log p(x)− β D1−β [q(z|x)||p(z|x)] (28)

where in the third line we have used the skew symmetry property Dα[p||q] = α
1−αD1−α[q||p] of the

Renyi divergence for 0 < α < 1 [19]. We note several special orders of the Renyi divergence can be
found in [19, 13], and confirm that logZ0 = 0 and logZ1 = log p(x) as above, subject to the support
of q being contained in that of p.

C.2 Renyi Divergence Variational Inference

We can recognize the expression in (28) as corresponding to the Renyi divergence variational inference
framework of [13], which constructs a lower bound on likelihood by subtracting an α-divergence:

Lα = log p(x)−Dα[q(z|x)||p(z|x)]

=
1

1− α
log p(x)1−α +

1

α− 1
log

∫
q(z|x)α

p(x, z)1−α

p(x)1−α
dz

=
1

1− α
log

∫
q(z|x)αp(x, z)1−αdz (29)
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Using (28) and β = 1− α, we can immediately relate the partition function logZβ and objective of
[13].

ψ(β) = logZβ = βL1−β = β
(

log p(x)−D1−β [q(z|x)||p(z|x)]
)

(30)

Each partition function thus corresponds to a lower bound on log-likelihood constructed using
D1−β [q(z|x)||p(z|x)], scaled by β. We will proceed to reference the divergence order using β, even
when referring to results in the α notation from [13], [19], etc. We can rewrite the Renyi VI objective
and its Monte Carlo estimator [13] as:

L1−β =
1

β
logEq[(

p(x, z)

q(z|x)
)β ]

≈ 1

β
log

1

S

S∑
s=1

p(x, zs)
β

q(zs|x)β
, L̂1−β,S =

1

β
log Ẑβ (31)

Note that we have L0 = log p(x), so that the importance-weighted autoencoder (IWAE) [5] is
recovered for L̂0,S . Further, the estimate is non-increasing in α for a fixed number of samples S,
and increasing in S for fixed α [13]. For any β and finite samples, Li and Turner [13] show that, if
there exists a point where L̂1−β,S = log p(x), it will occur with βS ≥ 1 (i.e. αS ≤ 0). While we
have yet to fully characterize the role of intermediate logZβ in the TVO setting, this could motivate
considering β ≥ 1.

D Gradient Estimation

Li and Turner [13] also provide a gradient estimator based on the reparameterization trick [11] that is
applicable for any β, although they consider only a single order of the Renyi divergence at a time.
This amounts to a self-normalized importance sampling estimate [5, 13] that uses the same weights
as (5) and [15].

∇θL̂1−β =
1

β
∇θ log Ẑβ =

S∑
s=1

ws∑
s ws
∇θ log

p(x, zs)

q(zs|x)
where ws =

p(x, zs)
β

q(zs|x)β
(32)

where θ is used to denote the parameters of both p and q. Thus, we can use the same self-normalized
importance sampling scheme as in (5) to estimate the gradient of logZβ with respect to parameters
θ. This involves taking the expectation of the gradient of the importance weights, and, given the
correspondence shown in (31), matches the estimator derived in [13].

In order to optimize the TVO with respect to q and p, Masrani et al. [15] derive an expression for
∇θ∇β logZβ = ∇θEπβφ(x, z), where θ denotes the parameters of both p and q :

∇θ∇β logZβ = ∇θEπβ log
p(x, z)

q(z|x)
(33)

= Eπβ∇θ log
p(x, z)

q(z|x)
+

∫
log

p(x, z)

q(z|x)
∇θπβ(z|x)dz (34)

= Eπβ∇θ log
p(x, z)

q(z|x)
+ Eπβ log

p(x, z)

q(z|x)
∇θ log πβ(z|x) (35)

= Eπβ∇θ log
p(x, z)

q(z|x)
+ Covπβ [log

p(x, z)

q(z|x)
,∇θ

(
(1− β) log q(z|x) + β log p(x, z)

)
]

(36)

where we have used the product rule in the second line and∇θπβ = πβ ∇θ log πβ in the third line.
See App. D of [15] for more detailed derivations.

However, note that the first term may be optimized via the reparameterization trick since we will use
the self-normalized importance sampling scheme above to translate samples from q(ε)→ q(z|x)→
πβ(z|x) using an encoding transformation z = g(ε) :

Eπβ∇θ log
p(x, z)

q(z|x)
≈

S∑
s=1

ws∑
s ws
∇θ log

p(x, g(εs))

q(g(εs)|x)
where ws =

p(x, g(εs))
β

q(g(εs)|x)β
(37)
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Thus, the reparameterization-free gradient estimator found in Masrani et al. [15] simply contains an
additional term measuring the covariance of the sufficient statistics and gradients of the unnormalized
log-mixture distribution. This expectation is again estimated using the same importance sampling
scheme as above [15].

11
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